- 1.Convergence of solutions for Volterra-Lotka prey-predator systems with time delays, Applied Mathematics Letters , (2009)(2),  170-174,(第一作者)
 
 
- 2.一类非均匀 Chemostat 模型的共存态, 数学学报,  (2009)(1),  141-152,(第一作者) 
- 3.Maximal attractors of classical solutions for reaction diffusion equations with dispersion,  Acta Mathematica Scientia, (2005)(2),  248-258,(第一作者) 
- 4.Blow-up of solutions of the ignition model, Journal of Systems Science and Complexity (2002) (3) 278-281,(第一作者) 
- 5.应用偏微分方程, 西安交通大学出版社,2009.(独著) 
- 6.一类具有交叉扩散的捕食模型非常数正解的存在性,应用数学学报, 2013, 36(2),232-240. (第一作者) 
- 7.一类比率依赖的Holling-Leslie捕食-食饵模型的全局分歧,计算机工程与应用,2012, 48(17),58-62. (通讯作者) 
- 8.The asymptotic stability for an SIQS epidemic model with diffusion,International Journal of Biomathematics, (2016)(9), 1650015(第一作者) 
- 9.Dynamical behaviors of a classical Lotka-Volterra competition-diffusion-advection system, Nonlinear Analysis: Real World Applications, 2021, 61:103344.(通讯作者) 
- 10.A diffusive one-prey and two-cooperative-predators model with C-M functional response, International Journal of Bifurcation and Chaos, 2020, 30(15):1-31. (通讯作者) 
- 11.Qualitative analysis on a diffusive predator-prey model with toxins, Journal of Mathematical Analysis and Applications, (2020)(486),123868(通讯作者) 
- 12.Existence and stability of coexistence states in a competition unstirred chemostat, Nonlinear Analysis. Real World Applications. 2017(35), 441-456.(通讯作者) 
- 13.Some uniqueness, multiplicity and complete dynamics for a cooperative model,Computers and Mathematics with Applications, (2017)(73), 2587-2602.(通讯作者) 
- 14.Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion,Nonlinear Analysis: Real World Applications, (2016)(27), 261-282.(通讯作者) 
- 15.Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses, Discrete Contin. Dyn. Syst. Ser. B (2015)(20), 2269-2290(通讯作者) 
- 16.Globall Stability of the equilibrium for the Predator-prey model with modified Leslie-Gower Holling-type II schemes, Proceedings of the senveth conference on biological dynamic system and stability of differential equation, 2010, 967-971. (通讯作者)