中国·9001金沙以诚为本(股份有限公司)-Official website

欢迎光临陕西师范大学9001金沙以诚为本!   

学术活动
当前位置: 首页 > 学术活动 > 正文

数统华章2025系列33 A well-balanced moving mesh discontinuous Galerkin method for Ripa model on triangular meshes

来源: 发布时间: 2025-06-09 点击量:
  • 讲座人: 张敏 博士
  • 讲座日期: 2025-6-13(周五)
  • 讲座时间: 11:00
  • 地点: 文津楼3211

讲座人简介:

张敏,北京大学助理研究员。2020年12月博士毕业于厦门大学计算数学专业,2018年10月至2020年9月在美国堪萨斯大学联合培养,2021年1月至2023年4月在北京大学数学科学学院从事博士后研究工作、博雅博士后。获中国数学会第十七届钟家庆数学奖、入选北京市科协青年人才托举工程项目,现主持国家自然科学青年基金,参与科技部数学和应用研究专项项目。主要研究兴趣包括计算流体力学等问题的高精度数值方法、移动网格方法,以及北太天元科学计算软件的系统仿真技术等,相关研究成果发表在期刊SIAM J. Sci. Comput.、J. Comput. Phys.、J. Sci. Comput.等上,参编教材《北太天元科学计算编程与应用》。

讲座简介:

In this talk a rezoning-type adaptive moving mesh discontinuous Galerkin method is presented for the numerical solution of Ripa model with non-flat bottom topography. The Ripa model is a generalization of the shallow water equations that takes temperature variance into the modeling. The well-balance property is crucial to the simulation of perturbation waves over the lake-at-rest steady state such as waves on a lake and tsunami waves in the deep ocean. To ensure the well-balance and positivity-preservation properties, strategies are discussed in the use of slope limiting, positivity-preservation limiting, and data transferring between meshes. Particularly, it is suggested that a DG-interpolation scheme be used for the interpolation of both the flow variables and bottom topography from the old mesh to the new one and after each application of the positivity-preservation limiting on the water depth, a high-order correction be made to the approximation of the bottom topography according to the modifications in the water depth. Mesh adaptivity is realized using an MMPDE moving mesh method with a metric tensor based on an equilibrium variable and water depth. A motivation for this choice of the metric tensor is to adapt the mesh according to both the perturbations of the lake-at-rest steady state and the water depth distribution (bottom topography structure). Numerical examples of both the shallow water equations and Ripa model are presented to demonstrate the well-balance, high-order accuracy, and positivity-preserving properties of the method and its ability to capture small perturbations of the lake-at-rest steady-state. They also show that the mesh adaptation based on the equilibrium variable and water depth give more accurate results than that based on the commonly used entropy function.

关闭

XML 地图